Abstract

Articular cartilage is a load-bearing tissue found in animal and human joints. It is a composite gel-like material in which a fibrous collagen network encapsulates large proteoglycan assemblies that imbibe fluid and “inflate” the network. Here we describe a composite hydrogel consisting of a cross-linked polyvinyl alcohol matrix filled with poly(acrylic acid) microparticles that mimics functional properties and biomechanical behavior of cartilage. The swelling and mechanical behaviors of this biomimetic model system are strikingly similar to that of human cartilage. The development of synthetic composite gel-based articular cartilage analog suggests new avenues to explore material properties, and their change in disease and degeneration, as well as novel strategies for developing composite tissue-engineered cartilage constructs for regenerative medicine applications.

Details

Title
Composite Hydrogel Model of Cartilage Predicts Its Load-Bearing Ability
Author
Horkay Ferenc 1 ; Basser, Peter J 1 

 Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA (GRID:grid.420089.7) (ISNI:0000 0000 9635 8082) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403301165
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.