It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There a few reports of rhodamine-based fluorescent sensors for selective detection of only Al3+, due to the challenge of identifying a suitable ligand for binding Al3+ ion. The use of fluorophore moieties appended to a polymer backbone for sensing applications is far from mature. Here, we report a new fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of Al3+ ions. Both monomer 4 and its polymer P exhibit high selectivity toward only Al3+ with no interference from other metal ions, having a limit detection of 0.5 and 2.1 µM, respectively. The reversible recognition of monomer 4 and P for Al3+ was also proved in presence of Na2EDTA by both UV–Vis and fluorometric titration. The experimental data indicates the behavior of 4 and P toward Al3+ is pH independent in medium conditions. In addition, the switch-on luminescence response of 4 at acidic pH (0 < 5.0), allowed us to specifically stain lysosomes (pH ~ 4.5–5.0) in live cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Texas A&M University at Qatar, Department of Chemistry, Doha, Qatar (GRID:grid.412392.f)
2 Weill Cornell Medicine Qatar, Department of Physiology and Biophysics, Doha, Qatar (GRID:grid.412392.f)
3 Texas A&M University at Qatar, Department of Chemistry, Doha, Qatar (GRID:grid.412392.f); Texas A&M University, Department of Materials Science & Engineering, College Station, USA (GRID:grid.264756.4) (ISNI:0000 0004 4687 2082)