Abstract/Details

Progression of chondrocyte signaling responses to mechanical stimulation in three-dimensional gel culture

Chai, Diana H.   Massachusetts Institute of Technology ProQuest Dissertations Publishing,  2008. 0819986.

Abstract (summary)

Mechanical stimulation of 3-D chondrocyte cultures increases extracellular matrix (ECM) production and mechanical stiffness in regenerating cartilage. The goal of this study was to examine the progression of chondrocyte signaling responses to mechanical stimulation in 3-D culture during tissue regeneration.

To investigate the role of integrins in chondrocyte mechanotransduction, function-blocking antibodies and small-molecule antagonists were used to disrupt integrin-matrix interactions during dynamic compression of chondrocytes in 3-D agarose culture. At early days in culture, blocking αvβ3 integrin abolished dynamic compression stimulation of proteoglycan synthesis, independent of effects in free-swell culture, while blocking α5β1 integrins abolished the effect of compression only when blocking in free-swell increased proteoglycan synthesis. This suggests that disrupting αvβ3 and α5β1 interactions with the ECM influences proteoglycan synthesis in distinct pathways and that αvβ3 more directly influences the mechanical response.

To further distinguish individual mechanotransduction pathways, we investigated the temporal gene transcription response of chondrocytes to ramp-and-hold compression on Days 1, 10, and 28 in 3-D agarose culture. Clustered and individual gene expression profiles changed temporally and in magnitude over time in culture. Day 1 cultures differed from Days 10 and 28, reflecting changes in cell microenvironment with development of pericellular and extracellular matrices. Comparisons with the response of intact tissue to compression suggested similar regulatory mechanisms. We further investigated MAPkinase (ERK1/2, p38, JNK) and Akt activation on Days 1 and 28 in agarose culture through phosphorylation state-specific Western blotting. Compression induced transient ERK1/2 phosphorylation on both days, with Day 28 levels similar to intact tissue. Unique from tissue behavior, only slight transient p38 phosphorylation was observed on Day 28, and SEK phosphorylation was undetected. Akt was uniquely regulated in intact cartilage compared to MAPks, with decreased total Akt levels over time under static compression. In contrast, compression transiently decreased pAkt levels in agarose cultures, with no changes in total Akt.

Changes in the chondrocyte responses to compression with time in agarose culture suggest that cells sense different forces and respond differently with time; further studies may help optimize mechanical loading for tissue-engineering purposes. These studies provide a basis for further examination of mechanotransduction in cartilage. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

Indexing (details)


Subject
Molecular biology;
Cellular biology;
Biomedical research;
Biomedical engineering
Classification
0307: Molecular biology
0379: Cellular biology
0541: Biomedical engineering
Identifier / keyword
Applied sciences; Biological sciences; Chondrocyte signaling; Gel culture; Mechanical stimulation
Title
Progression of chondrocyte signaling responses to mechanical stimulation in three-dimensional gel culture
Author
Chai, Diana H.
Number of pages
0
Degree date
2008
School code
0753
Source
DAI-B 69/02, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
Advisor
Grodzinsky, Alan J.
University/institution
Massachusetts Institute of Technology
University location
United States -- Massachusetts
Degree
Ph.D.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
0819986
ProQuest document ID
304355545
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
https://www.proquest.com/docview/304355545