It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pluripotent mesenchymal stem cells (MSCs) are considered ideal therapeutic targets in regenerative medicine, as they hold the capacity to differentiate into osteoblasts, adipocytes, fibroblasts, chondrocytes, and myocytes. The potential to harness MSCs as a means of prevention and treatment of disease is dependent on an improved understanding of the means by which exogenous signals regulate their activity, and the ability of these stimuli to influence either/both proliferation and differentiation This work addressed the hypothesis that MSCs represent a common mechano-responsive element upstream of osteoblast and adipocyte differentiation that could potentially be targeted for the control and treatment of both obesity and osteoporosis. We proposed that low magnitude mechanical signals (LMMS) could non-pharmacologically and non-invasively promote stem cell proliferation, and thus an organism’s healing and regenerative potential.
In light of the increased health complications experienced by obese individuals, we assessed the impact of a high fat diet on the resident stem cell population, as a possible contributing factor in the pathophysiology of obesity. We show that the MSC population was significantly diminished in animals fed a high fat diet for six weeks. Data from flow cytometry and real-time PCR provided clear indication that while the high fat diet decreased the MSC population, LMMS increased the proliferation of MSC’s and was able to recover the diet-induced decrease in cell numbers. In addition, the marrow environment in LMMS animals had shifted towards osteogenesis both in cell number and gene expression, providing a mechanism of LMMS action based on the selective differentiation of MSC’s into osteoprogenitors.
To characterize the phenotypic effects of twelve weeks of LMMS stimulation on a young adult animal, we developed a methodology for in vivo micro-computed tomography (microCT) for the precise determination of fat quantity, and more importantly fat distribution in the body. We applied these in vivo imaging methods to a complete characterization of the phenotypic fat suppression under normal dietary conditions, and several models of dietary induced obesity. Finally, data from a long term study (36 week of LMMS treatment) provided preliminary evidence of the benefit of LMMS in mitigating some the deleterious effects of dietary induced obesity and aging.
The experiments and results presented herein indicate that MSCs respond to LMMS by increasing proliferation. A developmentally mediated mechanism by which fat was suppressed and bone was enhanced, was implicated and was linked to the mechanically-based biasing of the mesenchymal stem cells to preferentially differentiate towards osteoblasts over adipocytes. The mechanical promotion of the number of progenitor cells, as well as driving commitment choices, suggests a means to enhance an organism’s regenerative capacity as achieved by exploiting stem cell sensitivity to physical signals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer