Content area
Abstract
In this thesis, active noise and vibration control of aircraft cabins is investigated, in which aircraft cabins are modeled as a cylindrical shell with a floor partition. As the first step toward a successful control strategy, a structural acoustic coupling analysis of the investigated structure is carried out. A new method called “Radiation Efficiency Analysis of Structural Modes (REASM)”, suitable for enclosures with irregular shapes, is proposed and applied in the current analysis. Then, the optimal design of control systems consisting of PZT actuators and PVDF error sensors is discussed. A novel design method for PVDF error sensors called “GA-based method” is introduced and shown to be very effective when complex structures are involved. Finally, an active control system is implemented on a scaled laboratory aircraft-cabin model. Both the simulation and experimental results show the great potential of using piezoelectric transducers in noise control and the significant performance improvement achieved through optimal design.