It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this research, a robust and reliable compression testing technique ("two-camera two-mirror" technique) for anisotropic, heterogeneous, and porous materials is developed for both nondestructive uniaxial loading in different orthogonal directions and destructive uniaxial loading over the yield point. The whole specimen strain can be measured using the video extensometer technique that provides a prompt evaluation method for strain measurement; and the full-field three-dimensional (3D) surface strain can be measured using the digital image correlation (DIC) technique that provides abundant information about the mechanical properties. In addition, the volumetric strain can be measured from micro-computed tomography (μCT) scans before and after the testing. Possible errors of this compression testing technique are calibrated. This technique was also validated using a variety of biological materials and biomaterials, such as birch wood blocks, solid rigid polyurethane (PU) foams, open-cell aluminum foams, and customized Ti-6Al-4V ELI lattice structures.
Several trabecular bone specimens from porcine cervical spines are tested nondestructively or destructively using the experimental technique. Elastic and post-yield behaviors of trabecular bone specimens are measured. Besides the nominal stress-strain curve, more mechanical properties of these specimens such as Poisson’s ratio and the local strain mapping are obtained. The 3D full-field measurements based on μCT data from one of the specimens are demonstrated as well.
A variety of micro-finite element (μFE) modeling meshes and tissue material models are investigated using ANSYS. An elasto-plastic μFE model of trabecular bone based on μCT reconstruction is validated and verified. The tissue material model of trabecular bone is predicted using the method of fitting the experimental nominal stress-strain curve. More measurements could be performed from μFE model, and a few examples are demonstrated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer