Content area

Abstract

The capacitated location-routing problem (CLRP) arises as a key problem in the design of distribution networks. It generalizes both the capacitated facility location problem (CFLP) and the multiple depot vehicle routing problem (MDVRP), the first by considering additional routing decisions and the second by adding the location decision variables. In this thesis we use different mathematical programming tools to develop and specialize new models and algorithms for solving the CLRP. In Chapter 3, three new models are presented for the CLRP based on vehicle-flow and commodity-flow formulations, all of which are shown to dominate, in terms of the linear relaxation lower bound, the original two-index vehicle-flow formulation [19]. Known valid inequalities are complemented with some new ones and included using separation algorithms that in many cases generalize extisting ones found in the literature. Computational experiments suggest that flow models can be efficient for dealing with small or medium size instances of the CLRP (50 customers or less). In Chapter 4, a new branch-and-cut-and-price exact algorithm is introduced for the CLRP based on a set-partitioning formulation. The pricing problem is a shortest path problem with resource constraints (SPPRC). In particular, we consider a relaxation of such problem in which routes are allowed to contain cycles of length three or more. This is complemented with the development of new valid inequalities that are shown to be effective for closing the optimality gap as well as to restrict the appearance of cycles. Computational experience supports the fact that this method is now the best exact method for the CLRP. In Chapter 5, we introduce a new meta-heuristic with the aim of finding good quality solutions in short or moderate computing times. First, a bundle of good solutions is generated with the help of a greedy randomized adaptive search procedure (GRASP). Following this, a blending procedure is applied with the aim of producing a better upper bound as a combination of all the others in the bundle. An iterative destroy-and-repair method is then applied using a location-reallocation model that generalizes the reallocation model due to de Franceschi et al. [48].

Keywords: location-routing, branch-and-cut, branch-and-price, metaheuristic.

Details

Title
Models and Algorithms for the Capacitated Location-Routing Problem
Author
Contardo, Claudio
Year
2011
Publisher
ProQuest Dissertations & Theses
ISBN
978-0-494-81349-2
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
919559436
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.