It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We developed a novel large-stroke deformable mirror for focus control and spherical aberration correction. The mirrors fabricated using MEMS technology provide full range (150-200 µm in tissue) of focus scanning at high numerical aperture (N.A.=0.5-0.7) for confocal microscopy and optical coherence tomography (OCT). In addition to large stroke, low power consumption and high speed operation are other key factors of the developed devices. The impact of this project is broad since the miniaturized deformable mirrors have a wide range of applications. In addition to focus scanning in microscopes they can also be used in small form factor systems such as cell phone cameras and robot vision. Furthermore, laser based microscopes equipped with the focus control mirror may be useful for skin cancer diagnosis and treatment. This thesis consists of seven chapters. The first chapter introduces optical focus control and focus control elements. The second chapter describes different schemes for optical focus control in imaging systems including transmissive variable lenses. The principle of operation, fabrication, and characterization of electrostatic deformable mirrors are reviewed in Chapter 3. High-speed focus control mirrors with controlled air damping are discussed in Chapter 4. In this chapter a model adopted from the analysis of MEMS microphone is used to design the backplate of a MEMS deformable mirror. Moreover, electrostatic-pneumatic MEMS deformable mirrors are introduced in Chapter 5. Analytical model is developed for electrostatic-pneumatic actuation in order to design a MEMS mirror with two membranes. Applications of MEMS deformable mirrors are demonstrated in optical systems in Chapter 6. Finally, a summary and future work are discussed in Chapter 7. The fabrication process details are given in Appendix A.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer