It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Existing paradigms for stroke diagnosis typically involve computed tomography (CT) or magnetic resonance (MR) imaging to classify ischemic versus hemorrhagic stroke variants, as treatment for these subtypes varies widely. Delays in diagnosis and issues related to transport of unstable patients may worsen neurological status. As such, translational medical devices that accelerate time to treatment in the field or hospital setting have the potential to lower morbidity and mortality in stroke patients. We demonstrated feasibility of rapid and accurate bedside stroke detection using a novel, handheld portable eddy current damping imaging device in laboratory benchtop as well as live human clinical ischemic and hemorrhagic stroke settings. We show that diagnosis of stroke may potentially be reduced from several hours to minutes, with additional spatial localization of intracranial hemorrhage, thereby rapidly guiding time-sensitive medical decisions for clinical intervention such as tissue plasminogen activator (tPA). The sensor additionally detects ischemic and hemorrhagic lesions located deep inside the brain, and its range can be selectively tuned during sensor design and fabrication.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer