It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Acoustic parameters (velocity and attenuation-coecient) are known to be sensitive to the Degree of Sensitization (DoS) in aluminum alloys. The attenuation coecient has been shown to be more sensitive to DoS than transverse and longitudinal wave velocities. There is a need to investigate ways of improving the precision (reducing the error bars) in the attenuation coecient. In this thesis, two methods for generating source signals, and two techniques for analyzing the received signals, both using the Pulse{Echo ultrasonic technique, were investigated. The two techniques of analysis (time- and frequency-domain correlation) were compared with the scope of observing the variation in the precision of the attenuation coecient, with the frequency-domain correlation technique found to be slightly more precise. In addition, a comparison was made between the frequency-domain correlation technique developed in this thesis and the technique previously used by the group to obtain the acoustic parameters. The frequency-domain correlation technique was found to be comparable, in terms of errors, with the current technique. Most importantly, it was also found to be much faster (480 times faster than the current technique), less tedious, since it is automated. A conclusion that the frequency-domain correlation technique would be suitable for analyzing very large data sets (e.g in material health monitoring), with less eort, can be drawn. Further, because of the ease-of-use, large sets of data can be analyzed quickly to allow for proper statistics, making frequency dependent measurements of acoustic parameters of interest an easier task.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer